MATH 308 Lecture 29
« previous | Friday, April 5, 2013 | next »
Eigenvalues and Eigenvectors
(See MATH 323 Lecture 24#Eigenvalues and Eigenvectors→)
Just to mention it here,
Eigenvectors are nonzero solutions to
Exercise 5
Find eigenvalues and eigenvectors of
Find eigenvalues and eigenvectors of
Solving Systems of Equations
Theorem 7.4.1
Let be solutions to the homogeneous system
on the interval , where is a continuous matrix function on ,
then for any real numbers , the vector
is a solution to the homogeneous system.
Theorem 7.4.2
Let be linearly independent solutions to the homogeneous system
on the interval , where is a continuous matrix function on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I} ,
Any solution Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}(t)} can be expressed in the form
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1, \ldots, c_n} are constants.
Theorem 7.4.3
The Wronskian is either 0 on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I} or never vanishes on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I} .
In other words, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W(X_1, \ldots, X_n) = 0} , then the solutions are linearly dependent and do not describe all possible solutions.
Otherwise, we have found all solutions