MATH 308 Lecture 15
« previous | Wednesday, February 20, 2013 | next »
Remark for section 3.5
How would we go about solving ?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_h = c_1 \, \mathrm{e}^{2x} + c_2 \, \mathrm{e}^{x}}
Particular Solution Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_p = A \, \sin{2x} + B \, \cos{2x} + a\,x + b + C\,x\,\mathrm{e}^{x}}
Section 3.6: Variation of Parameters
Find solution to
Homogeneous solution is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_h = c_1 \, \mathrm{e}^{-x} + c_2 \, \mathrm{e}^{2x}}
What about non-constant coefficients; i.e. what if the constants were actually functions of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} :
There are infinitely many possibilities for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2} , so we impose a restriction to limit the number of possibilities:
Using the above examples, we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_1 = \mathrm{e}^{-x}}
and :
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} y &= c_1 \, \mathrm{e}^{-x} + c_2 \, \mathrm{e}^{2x} \\ y' &= c_1' \, \mathrm{e}^{-x} - c_1 \, \mathrm{e}^{-x} + c_2' \, \mathrm{e}^{2x} + 2c_2 \, \mathrm{e}^{2x} \\ &= \left( c_1' \, \mathrm{e}^{-x} + c_2' \, \mathrm{e}^{2x} \right) -c_1 \, \mathrm{e}^{-x} + 2c_2 \, \mathrm{e}^{2x} \\ &= -c_1 \, \mathrm{e}^{-x} + 2c_2 \, \mathrm{e}^{2x} \\ y'' &= c_1 \, \mathrm{e}^{-x} - c_1' \, \mathrm{e}^{-x} + 2c_2' \, \mathrm{e}^{2x} + 4c_2 \, \mathrm{e}^{2x} \end{align}}
Simplification: We were able to simplify Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'} with the restriction Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1' \, \mathrm{e}^{-x} + c_2' \, \mathrm{e}^{2x} = 0} .
Now we can plug our functions into the differential equation:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathrm{e}^{3x} &= y'' - y' -2y \\ &= (c_1 \, \mathrm{e}^{-x}-c_1' \, \mathrm{e}^{-x} + 2c_2' \, \mathrm{e}^{2x} + 4c_2 \, \mathrm{e}^{2x}) - (-c_1 \, \mathrm{e}^{-x} + 2c_2 \, \mathrm{e}^{2x}) - 2(c_1\,\mathrm{e}^{-x} + c_2\,\mathrm{e}^{2x}) \\ &= \cancel{c_1 \, \mathrm{e}^{-x}} -c_1' \, \mathrm{e}^{-x} + 2c_2' \, \mathrm{e}^{2x} + \cancel{4c_2 \, \mathrm{e}^{2x}} + \cancel{c_1 \, \mathrm{e}^{-x}} \cancel{-2c_2 \, \mathrm{e}^{2x}} \cancel{- 2c_1 \, \mathrm{e}^{-x}} \cancel{-2c_2\,\mathrm{e}^{2x}} \\ &= -c_1' \, \mathrm{e}^{-x} + 2c_2' \, \mathrm{e}^{2x} \end{align}}
Use restriction as second equation in system:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} -c_1' \, \mathrm{e}^{-x} + 2c_2' \, \mathrm{e}^{2x} = \mathrm{e}^{3x} \\ c_1' \, \mathrm{e}^{-x} + c_2' \, \mathrm{e}^{2x} = 0 \end{cases}}
We solve for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1'} and :
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} c_1' &= -\frac{1}{3} \, \mathrm{e}^{4x} & c_2' &= \frac{1}{3} \, \mathrm{e}^{x}\\ c_1 &= -\frac{1}{12} \, \mathrm{e}^{4x} + A & c_2 &= \frac{1}{3} \, \mathrm{e}^{x} + B \end{align}}
So general solution to original differential equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'' - y' - 2y = \mathrm{e}^{3x}} is:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} y &= \left( -\frac{1}{12} \, \mathrm{e}^{4x} + A \right) \mathrm{e}^{-x} + \left( \frac{1}{3} \, \mathrm{e}^{x} + B \right) \mathrm{e}^{2x} \\ &= \left( -\frac{1}{12} \, \mathrm{e}^{3x} + \frac{1}{3} \, \mathrm{e}^{3x} \right) + A \, \mathrm{e}^{-x} + B \, \mathrm{e}^{2x} \\ &= \frac{1}{4} \, \mathrm{e}^{3x} + A \, \mathrm{e}^{-x} + B \, \mathrm{e}^{2x} \end{align}}
Method for Solving Second Order ODEs
To determine a particular solution to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'' + p(x) \, y' + q(x) \, y = g(x)}
Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_1} and for corresponding homogeneous equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'' + p(x) \, y' + q(x) \, y = 0}
Solve the following system for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2(x)}
or
A particular solution will be
Exercise 7
Find general solution to
Solution to homogeneous equation is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = c_1 \, \cos{x} + c_2 \, \sin{x}} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_1 = \cos{x}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_2 = \sin{x}} .
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W(y_1,y_2) = \cos^2(x) + \sin^2(x) = 1}
Plug in to equations for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1} and
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} c_1(x) &= -\int \sin{x} \, \frac{1}{\sin{x}} \, \mathrm{d}x \\ &= -x + A \\ c_2(x) &= \int \cos{x} \, \frac{1}{\sin{x}} \, \mathrm{d}x \\ &= \ln{(\sin{x})} + B \end{align}}
General solution is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} y &= \left( -x + A \right) \, \cos{x} + \left( \ln{(\sin{x})} + B \right) \sin{x} \\ &= -x \, \cos{x} + A\,\cos{x} + \ln{(\sin{x})} \, \sin{x} + B\,\sin{x} \end{align}}