« previous | Friday, February 24, 2012 | next »
Critical points of f ( x , y ) = x y sin ( π ( x − y ) ) {\displaystyle f(x,y)=xy\sin {\left(\pi (x-y)\right)}} bounded by y = ± x 2 {\displaystyle y=\pm {\frac {x}{2}}} , x 2 − y 2 = 1 {\displaystyle x^{2}-y^{2}=1} , and x = 0 {\displaystyle x=0} .
∂ f ∂ x = y sin ( π ( x − y ) ) + π x y cos ( π ( x − y ) ) ∂ f ∂ x = x sin ( π ( x − y ) ) − π x y cos ( π ( x − y ) ) both true { f x = 0 → y ( sin ( π ( x − y ) ) + π x cos ( π ( x − y ) ) ) = 0 f y = 0 → x ( sin ( π ( x − y ) ) − π y cos ( π ( x − y ) ) ) = 0 {\displaystyle {\begin{aligned}{\frac {\partial f}{\partial x}}&=y\sin {\left(\pi (x-y)\right)}+\pi xy\cos {\left(\pi (x-y)\right)}\\{\frac {\partial f}{\partial x}}&=x\sin {\left(\pi (x-y)\right)}-\pi xy\cos {\left(\pi (x-y)\right)}\\{\mbox{both true}}&{\begin{cases}f_{x}=0\rightarrow y\left(\sin {\left(\pi (x-y)\right)}+\pi x\cos {\left(\pi (x-y)\right)}\right)=0\\f_{y}=0\rightarrow x\left(\sin {\left(\pi (x-y)\right)}-\pi y\cos {\left(\pi (x-y)\right)}\right)=0\\\end{cases}}\end{aligned}}}
Therefore either y = 0 {\displaystyle y=0} or sin ( π ( x − y ) ) + π x cos ( π ( x − y ) ) = 0 {\displaystyle \sin {\left(\pi (x-y)\right)}+\pi x\cos {\left(\pi (x-y)\right)}=0} and x = 0 {\displaystyle x=0} or sin ( π ( x − y ) ) − π y cos ( π ( x − y ) ) {\displaystyle \sin {\left(\pi (x-y)\right)}-\pi y\cos {\left(\pi (x-y)\right)}}
(0,0) is a critical point.
x = 0 , y ≠ 0 {\displaystyle x=0,\,y\neq 0} is not in the domain.
...