« previous | Wednesday, February 22, 2012 | next »
d r = r x d x + r y d y d θ = θ x d x + θ y d y {\displaystyle {\begin{aligned}\mathrm {d} r&=r_{x}\mathrm {d} x+r_{y}\mathrm {d} y\\\mathrm {d} \theta &=\theta _{x}\mathrm {d} x+\theta _{y}\mathrm {d} y\end{aligned}}}
A = ( a b c d ) A − 1 = 1 d e t ( A ) ( d − b − c a ) {\displaystyle {\begin{aligned}A&={\begin{pmatrix}a&b\\c&d\end{pmatrix}}\\A^{-1}&={\frac {1}{\mathrm {det} {\left(A\right)}}}{\begin{pmatrix}d&-b\\-c&a\end{pmatrix}}\end{aligned}}}
( cos θ − r sin θ sin θ r cos θ ) − 1 = ( cos θ sin θ − sin θ r cos θ r ) {\displaystyle {\begin{pmatrix}\cos {\theta }&-r\sin {\theta }\\\sin {\theta }&r\cos {\theta }\end{pmatrix}}^{-1}={\begin{pmatrix}\cos {\theta }&\sin {\theta }\\-{\frac {\sin {\theta }}{r}}&{\frac {\cos {\theta }}{r}}\end{pmatrix}}}