MATH 251 Lecture 15
« previous | Wednesday, February 22, 2012 | next »
Derivatives of Polar Coordinates
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathrm{d}r &= r_x \mathrm{d}x + r_y \mathrm{d}y \\ \mathrm{d}\theta &= \theta_x \mathrm{d}x + \theta_y \mathrm{d}y \end{align}}
Inverse Matrix
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} A &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ A^{-1} &= \frac{1}{\mathrm{det}{\left(A\right)}} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \end{align}}
Solution
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} \cos{\theta} & -r\sin{\theta} \\ \sin{\theta} & r\cos{\theta} \end{pmatrix}^{-1} = \begin{pmatrix} \cos{\theta} & \sin{\theta} \\ -\frac{\sin{\theta}}{r} & \frac{\cos{\theta}}{r} \end{pmatrix}}