MATH 414 Lecture 7
« previous | Wednesday, January 29, 2014 | next »
Last Time
Standard Interval
Scaled Interval
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -c \le x \le c}
If we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t = \frac{\pi}{c} \, x} , then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = \frac{c}{\pi}} , and evaluating our expressions with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} yields.
Example
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \mbox{otherwise} \end{cases} \quad \quad x \in \left[ -2, 2 \right]}
In this case, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = 2} , so
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0 = \frac{1}{2 \cdot 2} \int_{-2}^{2} f(x) \,\mathrm{d}x = \frac{1}{4}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n = \frac{1}{2} \int_{-2}^2 f(x) \, \cos{ \left( \frac{n \, \pi \, x}{2} \right) } \, \mathrm{d}x = \frac{1}{2} \int_0^1 \, \cos{ \left( \frac{n \, \pi \, x}{2} \right) } \,\mathrm{d}x = \frac{1}{n \, \pi} \, \sin{ \left( \frac{n \, \pi}{2} \right) }}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_n = \frac{1}{2} \int_{-2}^2 f(x) \, \sin{ \left( \frac{n \, \pi \, x}{2} \right) } \, \mathrm{d}x = \frac{1}{2} \int_0^1 \, \sin{ \left( \frac{n \, \pi \, x}{2} \right) } \,\mathrm{d}x = \frac{1}{n \, \pi} \, \left( 1 - \cos{ \left( \frac{n \, \pi}{2} \right) } \right)}
Hence
Shifted Interval
Lemma. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)} be a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \pi} -periodic function. Then
In other words, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-\pi+c}^{\pi+c} F(x) \, \mathrm{d}x} is independent of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} .
Proof. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(c) = \int_{-\pi+c}^{\pi+c} F(x) \,\mathrm{d}x} .
Periodic Extension
Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is defined on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \le x \le 2 \pi} and undefined elsewhere.
A periodic extension basically copies the defined part of the function into the undefined part
If the period of a function is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} , then
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t) = a_0 + \sum_{n=1}^\infty a_n \, \cos{ \left( \frac{2 \pi \, n \, t}{T} \right)} + b_n \, \sin{ \left( \frac{2\pi \, n \, t}{T} \right)}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n = \frac{1}{ \left( \frac{T}{2} \right)} \int_{0}^{T} f(t) \, \cos{ \left( \frac{2 \pi \, n \, t}{n} \right)}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_n = \frac{1}{ \left( \frac{T}{2} \right)} \int_{0}^{T} f(t) \, \sin{ \left( \frac{2 \pi \, n \, t}{n} \right)}}
Example
For example, take Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = x}
Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = a_0 + \sum_{n=1}^\infty a_n \, \cos{n \, x} + b_n \, \sin{n \, x}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_n = \frac{1}{\pi} \int_{0}^{2\pi} x \, \sin{n \, x} \,\mathrm{d}x}
etc...
In the end, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \pi - \sum_{n=1}^\infty \frac{2 \, \sin{n \, x}}{n}}