MATH 414 Lecture 15

From Notes
Jump to navigation Jump to search

« previous | Monday, February 17, 2014 | next »


Fourier Transforms

Given Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t)} , we define as

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathcal{F}[f](\lambda) = \hat{f}(\lambda) &= \frac{1}{\sqrt{2\pi}} \, \int_{-\infty}^\infty f(t) \, \mathrm{e}^{-i \, \lambda \, t} \,\mathrm{d}t \\ \mathcal{F}^{-1}[\hat{f}](t) = \frac{f(t+) + f(t-)}{2} &= \frac{1}{\sqrt{2\pi}} \, \int_{-\infty}^\infty \hat{f}(\lambda) \, \mathrm{e}^{i \, \lambda \, t} \,\mathrm{d}t \end{align}}

Example

For example, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t) = \theta(t) \, \mathrm{e}^{-t}} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta(t)} is the Heaviside function.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathcal{F}[f(t)](\lambda) &= \frac{1}{\sqrt{2\pi}} \, \int_{-\infty}^{\infty} \theta(t) \, \mathrm{e}^{-t} \, \mathrm{e}^{-i \, \lambda \, t} \,\mathrm{d}t \\ &= \frac{1}{\sqrt{2\pi}} \, \int_{0}^\infty \mathrm{e}^{-t-i \, \lambda \, t} \,\mathrm{d}t \\ &= \frac{1}{\sqrt{2\pi}} \, \left( \frac{1}{1 + i \, \lambda} \right) - \frac{1}{1 + i \, \lambda} \, \lim_{t \to \infty} \mathrm{e}^{-\left( 1 + i \, \lambda \right) \, t} \\ &= \frac{1}{\sqrt{2\pi}} \, \frac{1}{1 + i \, \lambda} \end{align}}

Properties

Linearity

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}^{-1}} are linear transformations. That is, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} are scalars, then

Theorem.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}\left[ \alpha \, f + \beta \, g \right] = \alpha \, \mathcal{F} \left[ f \right] + \beta \, \mathcal{F} \left[ g \right]}

Proof.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathcal{F}\left[ \alpha \, f + \beta \, g \right] &= \frac{1}{\sqrt{2\pi}} \, \int_{-\infty}^{\infty} (\alpha \, f + \beta \, g) \, \mathrm{e}^{-i \, \lambda \, t} \,\mathrm{d}t \\ &= \alpha \left( \frac{1}{\sqrt{2\pi}} \, \int_{-\infty}^{\infty} f(t) \, \mathrm{e}^{-i \, \lambda \, t} \,\mathrm{d}t \right) + \beta \left( \frac{1}{\sqrt{2\pi}} \, \int_{-\infty}^{\infty} g(t) \, \mathrm{e}^{-i \, \lambda \, t} \,\mathrm{d}t \right) \\ &= \alpha \, \mathcal{F}[f] + \beta \, \mathcal{F}[g] \end{align}}
quod erat demonstrandum

Product of Powers

(Proven by Leibniz's Rule)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}\left[ t^n \, f(t) \right] = i^n \, \frac{\mathrm{d}^n \hat{f}}{\mathrm{d}\lambda^n}}

(and its inverse)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}^{-1}\left[ \lambda^n \, \hat{f}(\lambda) \right] = (-i)^n \, \frac{\mathrm{d}^n f}{\mathrm{d} t^n}}

Derivatives

(Proven with Integration by parts)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}\left[ f^{(n)}(t) \right] = \left( i \, \lambda \right)^n \, \hat{f}(\lambda)}

(and its inverse)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}^{-1}\left[ \frac{\mathrm{d}^n \hat{f}}{\mathrm{d} \lambda^n} \right](t) = \left( -i \, t \right)^n \, f(t)}

Translation / Shift

Given Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t)} , suppose we want to find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t-a)} (shift to right by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} units)

Theorem.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F} \left[ f(t-a) \right] = \mathrm{e}^{-i \, \lambda \, a} \, \mathcal{F} \left[ f \right]}

Proof.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}\left[ f(t-a) \right] = \frac{1}{\sqrt{2\pi}} \, \int_{-\infty}^{\infty} f(t-a) \, \mathrm{e}^{-i \, \lambda \, t} \,\mathrm{d}t}

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau = t-a} , then

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}\left[ f(\tau) \right] = \frac{1}{\sqrt{2\pi}} \, \int_{-\infty}^{\infty} f(\tau) \, \mathrm{e}^{-i \, \lambda \, (\tau + a)} \,\mathrm{d}t = \mathrm{e}^{-i \, \lambda \, \tau} \hat{f}(\tau)}
quod erat demonstrandum
Translation in spatial domain is change of phase in time domain

Scaling

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \mathcal{F}\left[ f(b \, t) \right] &= \frac{1}{b} \, \hat{f} \left( \frac{\lambda}{b} \right) \\ \mathcal{F}^{-1} \left[ \hat{f}(c \, \lambda) \right] &= \frac{1}{c} \, f \left( \frac{t}{c} \right) \end{align}}


Laplace Transform

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t) = \theta(t) \, g(t)} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta(t)} is the Heaviside function. In other words, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t) = 0} for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t < 0} , then

Theorem.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F} \left[ f(t) \right] = \frac{1}{\sqrt{2\pi}} \, \mathcal{L} \left[ f(t) \right] \left( i \, \lambda \right)}

Proof.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}\left[ f(t) \right] = \frac{1}{\sqrt{2\pi}} \, \int_0^\infty g(t) \mathrm{e}^{-i \, \lambda \, t} \,\mathrm{d}t}

if we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = i \, \lambda} , we see that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}[f] = \frac{1}{\sqrt{2\pi}} \, \mathcal{L} \left\{ f \right\}(s) = \frac{1}{\sqrt{2\pi}} \, \mathcal{L} \left\{ f \right\} \left( i \, \lambda \right)}

quod erat demonstrandum


Example

The fourier transform of the tent function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t) = \pi - \left| x \right|} for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in \left[ -\pi, \pi \right]} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}\left[ f \right] = \sqrt{ \frac{2}{\pi} } \, \left( \frac{1-\cos{(\pi \, \lambda)}}{\lambda^2} \right)} .

find the Fourier transform of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(t) = \begin{cases} 1 & x \in \left[ -\pi, 0 \right] \\ -1 & x \in \left[ 0, \pi \right] \\ 0 & \mbox{otherwise} \end{cases}}

Observe that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(t) = f'(t)} , so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}\left[ g \right] = i \, \lambda \, \mathcal{F}\left[ f \right] = i \, \sqrt{\frac{2}{\pi}} \, \left( \frac{1-\cos{(\pi \, \lambda)}}{\lambda} \right)}