« previous | Monday, February 17, 2014 | next »
Fourier Transforms
Given  , we define
, we define  as
 as
={\hat {f}}(\lambda )&={\frac {1}{\sqrt {2\pi }}}\,\int _{-\infty }^{\infty }f(t)\,\mathrm {e} ^{-i\,\lambda \,t}\,\mathrm {d} t\\{\mathcal {F}}^{-1}[{\hat {f}}](t)={\frac {f(t+)+f(t-)}{2}}&={\frac {1}{\sqrt {2\pi }}}\,\int _{-\infty }^{\infty }{\hat {f}}(\lambda )\,\mathrm {e} ^{i\,\lambda \,t}\,\mathrm {d} t\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2ddc636a1814931140f58500637f7ae4c9dc7027) 
Example
For example,  , where
, where  is the Heaviside function.
 is the Heaviside function.
&={\frac {1}{\sqrt {2\pi }}}\,\int _{-\infty }^{\infty }\theta (t)\,\mathrm {e} ^{-t}\,\mathrm {e} ^{-i\,\lambda \,t}\,\mathrm {d} t\\&={\frac {1}{\sqrt {2\pi }}}\,\int _{0}^{\infty }\mathrm {e} ^{-t-i\,\lambda \,t}\,\mathrm {d} t\\&={\frac {1}{\sqrt {2\pi }}}\,\left({\frac {1}{1+i\,\lambda }}\right)-{\frac {1}{1+i\,\lambda }}\,\lim _{t\to \infty }\mathrm {e} ^{-\left(1+i\,\lambda \right)\,t}\\&={\frac {1}{\sqrt {2\pi }}}\,{\frac {1}{1+i\,\lambda }}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d004c7d6b8466bd32621842873af36d9a2aa8597) 
Properties
Linearity
 and
 and  are linear transformations. That is, if
 are linear transformations. That is, if  and
 and  are scalars, then
 are scalars, then
Theorem. ![{\displaystyle {\mathcal {F}}\left[\alpha \,f+\beta \,g\right]=\alpha \,{\mathcal {F}}\left[f\right]+\beta \,{\mathcal {F}}\left[g\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d5dc4b8d9701e4cc9530b4ac7f2442adfdd8c538) 
 
Proof.
![{\displaystyle {\begin{aligned}{\mathcal {F}}\left[\alpha \,f+\beta \,g\right]&={\frac {1}{\sqrt {2\pi }}}\,\int _{-\infty }^{\infty }(\alpha \,f+\beta \,g)\,\mathrm {e} ^{-i\,\lambda \,t}\,\mathrm {d} t\\&=\alpha \left({\frac {1}{\sqrt {2\pi }}}\,\int _{-\infty }^{\infty }f(t)\,\mathrm {e} ^{-i\,\lambda \,t}\,\mathrm {d} t\right)+\beta \left({\frac {1}{\sqrt {2\pi }}}\,\int _{-\infty }^{\infty }g(t)\,\mathrm {e} ^{-i\,\lambda \,t}\,\mathrm {d} t\right)\\&=\alpha \,{\mathcal {F}}[f]+\beta \,{\mathcal {F}}[g]\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d6e27478ece3686e08505fe0d9fcafd28e5e87e) 
 quod erat demonstrandum
Product of Powers
(Proven by Leibniz's Rule)
![{\displaystyle {\mathcal {F}}\left[t^{n}\,f(t)\right]=i^{n}\,{\frac {\mathrm {d} ^{n}{\hat {f}}}{\mathrm {d} \lambda ^{n}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/18bdfbd42ff678a78aecebdb435dfbf97b38380a) 
(and its inverse)
![{\displaystyle {\mathcal {F}}^{-1}\left[\lambda ^{n}\,{\hat {f}}(\lambda )\right]=(-i)^{n}\,{\frac {\mathrm {d} ^{n}f}{\mathrm {d} t^{n}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d8c54103a683c944c1eb7ee73c0b150fdfdc07fe) 
Derivatives
(Proven with Integration by parts)
![{\displaystyle {\mathcal {F}}\left[f^{(n)}(t)\right]=\left(i\,\lambda \right)^{n}\,{\hat {f}}(\lambda )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c0a7b65aa1bda4b8215f1bc38fa1e78bcf76694) 
(and its inverse)
=\left(-i\,t\right)^{n}\,f(t)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/884e7fbad0cb3e3cb9689f84c930da2241aea354) 
Translation / Shift
Given  , suppose we want to find
, suppose we want to find  (shift to right by
 (shift to right by  units)
 units)
Theorem. ![{\displaystyle {\mathcal {F}}\left[f(t-a)\right]=\mathrm {e} ^{-i\,\lambda \,a}\,{\mathcal {F}}\left[f\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5099a367e89bea1fef72171026db362327ebfe3b) 
 
Proof.
![{\displaystyle {\mathcal {F}}\left[f(t-a)\right]={\frac {1}{\sqrt {2\pi }}}\,\int _{-\infty }^{\infty }f(t-a)\,\mathrm {e} ^{-i\,\lambda \,t}\,\mathrm {d} t}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5ca61fbff054ea5bdf5cf83b1615b4c73c5fc824) 
Let  , then
, then
![{\displaystyle {\mathcal {F}}\left[f(\tau )\right]={\frac {1}{\sqrt {2\pi }}}\,\int _{-\infty }^{\infty }f(\tau )\,\mathrm {e} ^{-i\,\lambda \,(\tau +a)}\,\mathrm {d} t=\mathrm {e} ^{-i\,\lambda \,\tau }{\hat {f}}(\tau )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/56b2b1dc6945e7d46496c268c201fa204cc99d92) 
 quod erat demonstrandum
 Translation in spatial domain is change of phase in time domain
Scaling
![{\displaystyle {\begin{aligned}{\mathcal {F}}\left[f(b\,t)\right]&={\frac {1}{b}}\,{\hat {f}}\left({\frac {\lambda }{b}}\right)\\{\mathcal {F}}^{-1}\left[{\hat {f}}(c\,\lambda )\right]&={\frac {1}{c}}\,f\left({\frac {t}{c}}\right)\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/452e641f6125ff2cc4d5dec3ae7fe21356a0bd6c) 
Laplace Transform
Let  , where
, where  is the Heaviside function. In other words, if
 is the Heaviside function. In other words, if  for
 for  , then
, then
Theorem. ![{\displaystyle {\mathcal {F}}\left[f(t)\right]={\frac {1}{\sqrt {2\pi }}}\,{\mathcal {L}}\left[f(t)\right]\left(i\,\lambda \right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8a3e53a1a9f438f9cc6f644a5aa4f1a1607442b2) 
 
Proof.
![{\displaystyle {\mathcal {F}}\left[f(t)\right]={\frac {1}{\sqrt {2\pi }}}\,\int _{0}^{\infty }g(t)\mathrm {e} ^{-i\,\lambda \,t}\,\mathrm {d} t}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65bae136eb04201964a4cd25ce30a9d81ac31b24) 
if we let  , we see that
, we see that ![{\displaystyle {\mathcal {F}}[f]={\frac {1}{\sqrt {2\pi }}}\,{\mathcal {L}}\left\{f\right\}(s)={\frac {1}{\sqrt {2\pi }}}\,{\mathcal {L}}\left\{f\right\}\left(i\,\lambda \right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8366e73de8103c28b638519b86c1e6d64215e701) 
 quod erat demonstrandum
Example
The fourier transform of the tent function  for
 for ![{\displaystyle x\in \left[-\pi ,\pi \right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f9f8a09f9f4f68897a4f6e8a69abb9e4e1db54f) is
 is ![{\displaystyle {\mathcal {F}}\left[f\right]={\sqrt {\frac {2}{\pi }}}\,\left({\frac {1-\cos {(\pi \,\lambda )}}{\lambda ^{2}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3cde3f5a74c255ae2730d22c9034fc25087c87fc) .
.
find the Fourier transform of ![{\displaystyle g(t)={\begin{cases}1&x\in \left[-\pi ,0\right]\\-1&x\in \left[0,\pi \right]\\0&{\mbox{otherwise}}\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e23a2d04fd9d3f0c9927a2b00738b9f7db1e13fd) 
Observe that  , so
, so ![{\displaystyle {\mathcal {F}}\left[g\right]=i\,\lambda \,{\mathcal {F}}\left[f\right]=i\,{\sqrt {\frac {2}{\pi }}}\,\left({\frac {1-\cos {(\pi \,\lambda )}}{\lambda }}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/19359ffbaaa9cc6176f5bc89558306b5fc17a017)