MATH 251 Lecture 3
« previous | Monday, January 23, 2012 | next »
3D Vectors (cont'd)
(See MATH 152 Chapter 11.2→)
Define 3D space as all tuples of length 3 with real numbers:
Flux
Suppose the sphere Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x-1 \right)^2 + y^2 + z^2 = 4} is in a fluid flowing at velocity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 \hat\imath - 2 \hat\jmath} .
Find the normal of the sphere at point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( 2,\, \sqrt{3},\, 0 \right)} : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{N} = \left\langle 1,\, \sqrt{3},\, 0 \right\rangle}
Therefore, the flux is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi = \frac{\vec{v} \cdot \vec{N}}{\left| \vec{N} \right|} = \frac{3}{2}-\sqrt{3}}
Cross Product
(See MATH 152 Chapter 11.3→)
Given two vectors:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v} = \left\langle v_x,\, v_y,\, v_z \right\rangle = \left\langle 1,\, 2,\, 3 \right\rangle}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{w} = \left\langle w_x,\, w_y,\, w_z \right\rangle = \left\langle 9,\, 8,\, 7 \right\rangle }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \vec{v} \times \vec{w} &= \begin{vmatrix} \hat\imath & \hat\jmath & \hat{k} \\ v_x & v_y & v_z \\ w_x & w_y & w_z \\ \end{vmatrix} = \begin{vmatrix} \hat\imath & \hat\jmath & \hat{k} \\ 1 & 2 & 3 \\ 9 & 8 & 7 \\ \end{vmatrix} \\ &= \hat\imath \left( v_y \cdot w_z - v_z \cdot w_y \right) - \hat\jmath \left( v_x \cdot w_z - v_z \cdot w_x \right) + \hat{k} \left( v_x \cdot w_y - v_y \cdot w_x \right) \\ &= \hat\imath \left( 2 \cdot 7 - 3 \cdot 8 \right) - \hat\jmath \left( 1 \cdot 7 - 3 \cdot 9 \right) + \hat{k} \left( 1 \cdot 8 - 2 \cdot 9 \right) \\ &= -10\hat\imath + 20\hat\jmath-10\hat{k} \end{align}}
Application: Area of Parallelogram
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left| \vec{v} \times \vec{w} \right|} is the area of the parallelogram spanned by the vectors Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{w}}
Application: Area of Parallelogram
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{u} \times \vec{v} \cdot \vec{w}} represents the volume of the parallelepiped
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \\ \end{vmatrix}}