« previous | Wednesday, March 28, 2012 | next »
Volume
Special Case
If
is the region between the graphs of
and
, then
and
Area of Region
Area of region
Example
Mass and center of mass of region bounded by
,
,
, and
. The region has a constant mass density of
This is a wedge of a parabolic cylinder...
Use this to find the center of mass. We already know by symmetry that
Cylindrical Coordinates
Polar Coordinates +
, so just replace
and
by
and
.
Example
Integrate
over the region inside the sphere
and inside
Convert to Cylindrical Coordinates:




Calculate ranges
![{\displaystyle z\in \left[-{\sqrt {4-r^{2}}},{\sqrt {4-r^{2}}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d340c1d3e4525604c4cc500715ed3407ff73abaa)
![{\displaystyle r\in \left[0,2\cos {\theta }\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/81b3d48b8d3b9219032196a5baeae8c501b73ef7)
![{\displaystyle \theta \in \left[-{\frac {\pi }{2}},{\frac {\pi }{2}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/37379d6d2ae40957075275ffc4d58cc9a72be711)
Evaluate Integral