MATH 251 Lecture 21

From Notes
Jump to navigation Jump to search

« previous | Wednesday, March 7, 2012 | next »


Quadratic Form Example

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(x,y) = 2x^2+2xy+2y^2}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} A &= \begin{pmatrix}2&1\\1&2\end{pmatrix} \\ X &= \begin{pmatrix}x\\y\end{pmatrix} \\ Q &= X^T A X = \begin{pmatrix}x&y\end{pmatrix} \begin{pmatrix}2&1\\1&2\end{pmatrix} \begin{pmatrix}x\\y\end{pmatrix} \\ \end{align}}

  1. Lagrange Multiplier Equations:
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AX = \lambda X} ; Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2+y^2=1}
  2. Find characteristic polynomial and eigenvalues:
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} (2-\lambda)x+y=0\\x+(2-\lambda)y = 0\end{cases}}
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{vmatrix}2-\lambda & 1 \\ 1 & 2-\lambda\end{vmatrix}=(2-\lambda)^2-1=0}
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda = 1,3}
  3. Classify Q: positive
  4. Find Eigenvectors:
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \lambda=1 &\rightarrow \begin{cases}(2-1)x + y = 0\\x+(2-1)y=0\end{cases} \quad\longrightarrow\quad \vec{v}_1 = \begin{pmatrix}\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2}\end{pmatrix} \\ \lambda=3 &\rightarrow \begin{cases}(2-3)x + y = 0\\x+(2-3)y=0\end{cases} \quad\longrightarrow\quad \vec{v}_2 = \begin{pmatrix}\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}\end{pmatrix} \end{align}}
  5. Use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix}x\\y\end{pmatrix} = x'\vec{v}_1 + y'\vec{v}_2} and plug Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} into Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(x,y)} to get it in terms of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'}
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix}x\\y\end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix}x'+y'\\-x'+y'\end{pmatrix}}
    Even faster: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(x',y') = \lambda_1 (x')^2 + \lambda_2 (y')^2 = (x')^2 + 3(y')^2}


Integration Over General Regions

The mindset behind this...

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R \subseteq \mathbb{R}^2} (any 2D region) and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} be a rectangle that encloses Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iint_R f(x,y) \, \mathrm{d}A = \iint_Q f(x,y) \cdot \chi_R(x,y) \, \mathrm{d}A}

Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi_R(x,y)} is the characteristic equation for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} It "turns on" when we are inside Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} and "turns off" when we are outside of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} .

Fubini/Iterated Integrals

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} be a rectangle bounded by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b] \times [c,d]}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iint_R f(x,y) \, \mathrm{d}A = \int_c^d \left( \int_a^b f(x,y) \, \mathrm{d}x \right) \, \mathrm{d}y = \int_a^b \left( \int_c^d f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x}

Example

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iint_{[0,1]\times[0,2]} xy \, \mathrm{d}A}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \iint_{[0,1]\times[0,2]} xy \, \mathrm{d}A &= \int_0^2 \left( \int_0^1 xy \, \mathrm{d}x \right) \, \mathrm{d}y \\ &= \int_0^2 \left( \left. \frac{x^2}{2}y \right|_0^1 \right) \, \mathrm{d}y \\ &= \int_0^2 \frac{1}{2}y \, \mathrm{d}y \\ &= \left. \frac{y^2}{4} \right|_0^2 \\ &= 1 \end{align}}


A more sinister example

Integrate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y) = x^2+y} over the region bounded by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x^2} .

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \iint_R (x^2+y)\,\mathrm{d}A &= \int_0^1 \left( \int_y^{\sqrt{y}} \left( x^2+y \right) \, \mathrm{d}x \right) \, \mathrm{d}y \\ &= \int_0^1 \left( \left. \frac{x^3}{3} +xy \right|_y^{y^{\frac{1}{2}}} \right) \, \mathrm{d}y \\ &= \int_0^1 \left( \frac{4y^{\frac{3}{2}}}{3} - y^2 - \frac{y^3}{3} \right) \, \mathrm{d}y \\ &= \ldots \end{align}}

A Just-Plain-Evil Example

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y) = \mathrm{e}^x+y} bounded by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x^2} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x^4}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \iint_R f(x,y) \, \mathrm{d}A &= \int_{-1}^1 \int_{x^4}^{x^2} (\mathrm{e}^x+y) \,\mathrm{d}y \,\mathrm{d}x \\ &= \int_{-1}^{1} \left( x^2\mathrm{e}^x+\frac{1}{2}x^4 - x^4\mathrm{e}^x-\frac{x^8}{2} \right) \, \mathrm{d}x \\ &= \ldots \end{align}}

Another Example

Evaluate the integral of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{e}^{x^2}} bounded by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=2x} , and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=[0,1]} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \int_x^{2x} \mathrm{e}^{x^2} \, \mathrm{d}y \, \mathrm{d}x}