CSCE 441 Lecture 40
Jump to navigation
Jump to search
« previous | Tuesday, April 29, 2014 | next »
End Exam 2 content
Final Exam Review
Shadows, Collision Detection, Programmable Shaders, Quaternions, and Antialiasing will not be on the final.
Subjects:
- Shading / Texturing
- Hidden Surfaces
- Ray Tracing
- 3D Geometry
- Radiosity
- BRDF
- Solid Modeling
- Smooth Curves
- Smooth Surfaces
- Topics covered by assignments
Cumulative final, but less likely to ask questions that were asked on the midterm.
No code.
Interpolation of Normals
Linear interpolation:
- origin to point on straight line between two points
Spherical linear interpolation
- interpolate over angle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} between origin and endpoints
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left| n_0 \right| = \left| n_1 \right| = \left| n(t) \right|}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n(t) = \alpha \, n_0 + \beta \, n_1}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} n_0 \times n(t) &= n_0 \times \left( \alpha \, n_0 + \beta \, n_1 \right) & n_1 \times n(t) &= n_1 \times \left( \alpha \, n_0 + \beta \, n_1 \right) \\ &= \beta \, \left( n_0 \times n_1 \right) & &= \alpha \, \left( n_1 \times n_0 \right) \\ \left| n_0 \times n(t) \right| &= \beta \, \left| n_0 \times n_1 \right| & \left| n_1 \times n(t) \right| &= \alpha \, \left| n_1 \times n_0 \right| \\ \left| n_0 \right| \, \left| n(t) \right| \, \sin{(\theta \, t)} &= \beta \, \left| n_0 \right| \, \left| n_1 \right| \, \sin{\theta} & \left| n_1 \right| \, \left| n(t) \right| \, \sin{(\theta \, (1-t))} &= \alpha \, \left| n_1 \right| \, \left| n_0 \right| \, \sin{\theta} \\ \sin{(\theta \, t)} &= \beta \, \sin{\theta} & \sin{(\theta \, (1-t))} &= \alpha \, \sin{\theta} \\ \beta &= \frac{\sin{(\theta \, t)}}{\sin{\theta}} & \alpha &= \frac{\sin{(\theta \, (1-t))}}{\sin{\theta}} \\ \end{align}}