CSCE 441 Lecture 40

From Notes
Jump to navigation Jump to search

« previous | Tuesday, April 29, 2014 | next »

End Exam 2 content


Final Exam Review

Shadows, Collision Detection, Programmable Shaders, Quaternions, and Antialiasing will not be on the final.


Subjects:

  • Shading / Texturing
  • Hidden Surfaces
  • Ray Tracing
  • 3D Geometry
  • Radiosity
    • BRDF
  • Solid Modeling
  • Smooth Curves
  • Smooth Surfaces
  • Topics covered by assignments

Cumulative final, but less likely to ask questions that were asked on the midterm.

No code.


Interpolation of Normals

Linear interpolation:

  • origin to point on straight line between two points

Spherical linear interpolation

  • interpolate over angle Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} between origin and endpoints
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left| n_0 \right| = \left| n_1 \right| = \left| n(t) \right|}
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n(t) = \alpha \, n_0 + \beta \, n_1}
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} n_0 \times n(t) &= n_0 \times \left( \alpha \, n_0 + \beta \, n_1 \right) & n_1 \times n(t) &= n_1 \times \left( \alpha \, n_0 + \beta \, n_1 \right) \\ &= \beta \, \left( n_0 \times n_1 \right) & &= \alpha \, \left( n_1 \times n_0 \right) \\ \left| n_0 \times n(t) \right| &= \beta \, \left| n_0 \times n_1 \right| & \left| n_1 \times n(t) \right| &= \alpha \, \left| n_1 \times n_0 \right| \\ \left| n_0 \right| \, \left| n(t) \right| \, \sin{(\theta \, t)} &= \beta \, \left| n_0 \right| \, \left| n_1 \right| \, \sin{\theta} & \left| n_1 \right| \, \left| n(t) \right| \, \sin{(\theta \, (1-t))} &= \alpha \, \left| n_1 \right| \, \left| n_0 \right| \, \sin{\theta} \\ \sin{(\theta \, t)} &= \beta \, \sin{\theta} & \sin{(\theta \, (1-t))} &= \alpha \, \sin{\theta} \\ \beta &= \frac{\sin{(\theta \, t)}}{\sin{\theta}} & \alpha &= \frac{\sin{(\theta \, (1-t))}}{\sin{\theta}} \\ \end{align}}