CSCE 441 Lecture 20
« previous | Friday, February 28, 2014 | next »
Exam Review
6 questions, some with multiple parts (max sub-parts = 18)
- Explanations, short-answer
- Computation
- No programming
50 minutes to complete
Know Algorithms
- Scan conversion
- Clipping
Clipping
Cohen-Sutherland
Region Codes where 1 bit means "outside the window"
- If bitwise AND between region codes of endpoints is non-zero, then trivially reject
- If bitwise OR is identical to zero, then trivially accept
- Otherwise, have to split line into two segments via intersection
Liang-Barsky
- Set up parametric equation of line for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in \left[ 0,1 \right]}
- Find intersection parameter with boundary.
- Reject if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{min} > x_{max}}
Transformations
Taking vector equations and turning them into matrix Form
Cross Product Matrix
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( v \times \Box \right) = \begin{bmatrix} 0 & -v_z & v_y \\ v_z & 0 & -v_x \\ -v_y & v_x & 0 \end{bmatrix}}
Non-Uniform Scaling
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{p} = \vec{p} + (\alpha - 1) \, (\vec{v} \cdot (\vec{p} - \vec{o})) \, \vec{v}}
What's multiplied?
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\alpha - 1) \, \vec{v} \, \vec{v}^T}
What's added?
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-\alpha) \, \vec{v} \, \left( \vec{v} \cdot \vec{o} \right)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} \hat{p} \\ 1 \end{bmatrix} = \begin{bmatrix} I + \left( \alpha - 1 \right) \, \vec{v} \, \vec{v}^T & (1-\alpha) \, \vec{v} \, \left( \vec{v} \cdot \vec{o} \right) \\ 0 & 1 \end{bmatrix} \, \begin{bmatrix} \vec{p} \\ 1 \end{bmatrix} }
3D Rotations
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{p} = \vec{o} + (1-\cos{\theta}) \, (\vec{v} \cdot \vec{q}) \, \vec{v} + (\vec{v} \times \vec{q}) \sin{\theta} + \vec{q} \, \cos{\theta}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{q} = (1-\cos{\theta}) \, (\vec{v} \cdot \vec{q}) + (\vec{v} \times \vec{q}) \, \sin{\theta} + \vec{q} \, \cos{\theta}}
What is multiplied by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{q}}
?
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos{\theta}} , but it's not a scalar, so we need an identity factor: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos{\theta} \, I}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin{\theta} \, \left( \vec{v} \times \Box \right)}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-\cos{\theta}) \, \vec{v} \, \vec{v}^T}
We add all of these things together (esentially factoring out Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{q}} ) and fill in the upper-left block of our matrix
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} \cos{\theta} \, I + \sin{\theta} \, (\vec{v} \times \Box) + (1-\cos{\theta}) \, \vec{v} \, \vec{v}^T & 0 \\ 0 & 1 \end{bmatrix}}
Color
- Half-toning
- Dithering
- Error diffusion
- models of color
- Equations (total of 3; one per color)
- Properties of light
Lighting
(last topic covered chronologically)
Know definitions and ways to compute
- Ambient
- Diffuse
- Specular