CSCE 411 Lecture 39
« previous | Friday, November 30, 2012 | next »
Calculus of Finite Differences (cont'd)
Calculus for Computer Scientists!
Difference Operator
Equivalent to differential operator Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{\mathrm{d}}{\mathrm{d}x}} :
where the falling power Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^{\underline{m}}} is defined as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^{\underline{m}} = n(n-1)(n-2)\dots(n-m+2)(n-m+1)} .
Antidifference Operator
Analogous to indefinite integrals
Operator given as an indefinite sum:
What about Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^{\underline{-1}}} ?
Thus the harmonic number plays the role of a discrete logarithm.
Fundamental Theorem of FDC
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(n)} be an antidifference of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(n)} . Then
Example
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=5}^{64} c^n = \left. \frac{1}{c-1}c^n \right|_5^{65} = \frac{c^{65} - c^5}{c-1}}
Linearity
Example
Find a closed form for the sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n k^2} .
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sum k^2 \, \delta k &= \sum \left( k^{\underline{2}} + k^{\underline{1}} \right) \, \delta k \\ &= \frac{1}{3}k^{\underline{3}} + \frac{1}{2} k^{\underline{2}} \\ \sum_{k=1}^n &= \left. \frac{1}{3}k^{\underline{3}} + \frac{1}{2} k^{\underline{2}} \right|_1^{n+1} \end{align}}
Binomial Coefficients
Example
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^m \binom{n}{k} = \binom{m+1}{k+1} - \binom{0}{k+1} = \binom{m+1}{k+1}}
Partial Summation
The Product Rule
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \Delta(f(n) \, g(n)) &= f(n+1) \, g(n+1) - f(n) \, g(n) \\ &= f(n+1) \, g(n+1) - f(n) \, g(n+1) + f(n) \, g(n+1) - f(n) \, g(n) \\ &= (\Delta f(n)) \, g(n+1) + f(n) \, (\Delta g(n)) \\ &= (\Delta f(n)) \, Eg(n) + f(n) \, (\Delta g(n)) \end{align}}
Example
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sum_{k=0}^n k2^k &= \left. k2^k \right|_0^{n+1} - \sum_{k=0}^n 1 \cdot 2^{k+1} \\ &= \left. k2^k + 2^{k+1} \right|_0^{n+1} \end{align}}
References
- D. Gleich: Finite Calculus: A tutorial for solving Nasty Sums
- Graham, Knuth, Patashnik: Concrete Mathematics, Addison Wesley
- Ch. Jordan: Calculus of finite differences, AMS Chelsea, 1965